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In brief

The coincidence time window is the

maximal temporal interval that allows two

stimuli to be associated in Pavlovian

learning. However, its neuronal

mechanism remains unclear. Zeng et al.

identify a serotonergic circuitry that

regulates the coincidence time window

for Drosophila olfactory learning,

shedding light on the mystery left by Ivan

Pavlov.
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SUMMARY
The coincidence between conditioned stimulus (CS) and unconditioned stimulus (US) is essential for asso-
ciative learning; however, the mechanism regulating the duration of this temporal window remains unclear.
Here, we found that serotonin (5-HT) bi-directionally regulates the coincidence time window of olfactory
learning in Drosophila and affects synaptic plasticity of Kenyon cells (KCs) in the mushroom body (MB).
Utilizing GPCR-activation-based (GRAB) neurotransmitter sensors, we found that KC-released acetylcholine
(ACh) activates a serotonergic dorsal paired medial (DPM) neuron, which in turn provides inhibitory feedback
to KCs. Physiological stimuli induce spatially heterogeneous 5-HT signals, which proportionally gate the
intrinsic coincidence time windows of different MB compartments. Artificially reducing or increasing the
DPM neuron-released 5-HT shortens or prolongs the coincidence window, respectively. In a sequential trace
conditioning paradigm, this serotonergic neuromodulation helps to bridge the CS-US temporal gap.
Altogether, we report a model circuitry for perceiving the temporal coincidence and determining the causal
relationship between environmental events.
INTRODUCTION

To survive in the constantly changing environment, animals have

evolved associative learning to build a causal relationship

between a neutral conditioned stimulus (CS) and the subsequent

punitive or rewarding unconditioned stimulus (US). A prerequisite

for successfully building the association in Pavlovian condition-
ing1 is that the inter-stimulus interval (ISI) of the CS and US must

fallwithin a relativelybrief coincidence timewindow.This temporal

coincidenceexists in awide rangeof species, including in the eye-

blinking task in humans,2,3 the siphon withdrawal reflex in

Aplysia,4,5 and olfactory or visual associative learning in flies and

bees.6–10 Importantly, shifted coincidence time windows have

been reported in brain injuries and psychological diseases.11–18
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Figure 1. 5-HT bi-directionally regulates the coincidence time window of olfactory learning

(A and B) Schematics depicting the protocol for odor-shock pairing with varying ISIs (A) and the T-maze assay for measuring the olfactory memory (B).

(C–E) (C1–E1) Schematics depicting the control flies, Trhn�/� flies, and the SSRI-fed flies (10 mM fluoxetine). (C2–E2) Summary of the PI measured with the

indicated ISI; n = 5–11 for each group. (C3–E3) The relative PI-ISI profile fitted with a sigmoid function; the t50 ± standard error, Hill coefficient, and R2 are shown.

The coincidence time window is defined as the t50 and indicated by the shaded area. The dashed vertical line at 16.9 s represents the coincidence time window of

control flies.

In this and subsequent figures, all summary data are presented as the mean ± SEM, superimposed with individual data.

*p < 0.05; **p < 0.01; ***p < 0.001; and n.s., not significant (unpaired Student’s t test).
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Thus, elucidating themechanismof coincidence timewindowwill

provide valuable insights intohow thebrain estimates the relation-

ship between two temporally discrete events and shed new light

on how brain disorders affect associative learning.

Drosophila is a classical model organism for studying the

mechanism of associative learning owing to the robustness of

the olfactory learning paradigm and the genetic tractability of

the olfactory learning center mushroom body (MB).19–22 To elicit
2 Neuron 111, 1–18, April 5, 2023
the aversive olfactory memory by pairing the odor (CS) with an

electric shock (US), these two stimuli must follow a specific order

(shock after odor) and arrive in the coincidence time window,

which is on the order of tens of seconds.6,10,23–26 It has been re-

ported that dopamine (DA) receptors impose the input-order

requirement with different downstream cascades.27–30 However,

the specific molecules and circuits that gate the length of the

coincidence window remain unclear, even though numerous
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Figure 2. 5-HT regulates the coincidence time window for inducing synaptic depression

(A and B) Schematics depicting the in vivo two-photon imaging setup, fluorescence images (A), and the experimental protocol (B), in which odor-induced ACh

signals in the g1 compartment pre- and post-pairing were measured with ACh3.0 expressed in KCs.

(legend continued on next page)
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studies have attempted to tackle this mechanism by performing

behavioral and functional imaging experiments.31–33

In the MB of each hemisphere, �2,000 Kenyon cells (KCs)

bundle their axons into three lobes, called the a/b, a0/b0, and
g lobes, and each lobe is further segmented into 5 compart-

ments. The compartment serves as an anatomical and func-

tional unit, where the projection neuron-mediated olfactory

signal (CS) and the dopaminergic neuron (DAN)-mediated elec-

tric shock signal (US) converge on the KCs, and KCs release

acetylcholine (ACh) to activate the MB output neurons

(MBONs).34–40 Besides DA and ACh, the MB microcircuit also

orchestrates other neuromodulators to implement specialized

functions of the intricate learning process, including octop-

amine (OA), g-aminobutyric acid (GABA), glutamate, and

5-hydroxytryptamine (5-HT). There is only one serotonergic

dorsal paired medial (DPM) neuron innervating three MB lobes,

which is reported to be involved in olfactory learning.41–55

Nevertheless, little is known regarding the in vivo dynamics of

5-HT release from the DPM neuron, as well as its upstream reg-

ulations and downstream functions.

Here, we show that the coincidence time windows of olfactory

learning and the changeof synaptic plasticity are coherently regu-

lated by 5-HT released from the DPM neuron inDrosophila. Using

GPCR-activation-based (GRAB) sensors for AChand5-HT (GRA-

BACh3.0 and GRAB5-HT1.0, hereafter referred to as ACh3.0 and

5-HT1.0, respectively),56–58 we observed compartmentally het-

erogeneous 5-HT release in response to odor and electric shock.

We also identified the reciprocal connections between the DPM

neuron and KCs, where the DPM neuron is activated by KCs

and in turn provides inhibitory feedback to the KCs. This seroto-

nergic DPM neuron-mediated feedback circuit shapes the

intrinsic time windows of different MB compartments and im-

proves the learningperformance in a traceconditioningparadigm.

RESULTS

5-HT regulates the coincidence time window of single-
trial olfactory learning
To measure the coincidence time window of olfactory learning,

we used the T-maze to train flies by pairing an odor (CS+) and

the electric shock (US) with varying ISIs, while leaving another

odor as the unpaired stimulus (CS�). Then we tested the

flies’ preference between CS+ and CS� and calculated the per-

formance index (PI) of learning (Figures 1Aand1B).We found that

control flies learned to avoid theCS+onlywhen the ISIwas%15 s

(Figure 1C). We applied a sigmoid function to the relationship be-

tween the relative PI and the ISI; the coincidence time window

corresponds to the t50 of the fitted curve, which was 16.9 s for
(C) Representative pseudocolor images (top left), average (± SEM) traces (bottom

pre- and post-pairing.

(D–F) (D1–F1) Schematics depicting ACh3.0 imaging experiments in the control flie

relative change of the integrated ACh3.0 fluorescence in response to CS+ with the

and post-responses. (D3–F3) The DACh-ISI profile fitted with a sigmoid function; t

window for inducing synaptic depression is defined as the t50 and indicated by the

window of control flies.

*p < 0.05; **p < 0.01; ***p < 0.001; and n.s., not significant (paired Student’s t tes

See also Figures S1 and S2.
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control flies. We then examined the Trhn�/� flies,59 which lack

the rate-limiting tryptophan hydroxylase neuronal (Trhn) in 5-HT

biosynthesis, and found that the coincidence time window was

shortened to 10.8 s (Figure 1D). Conversely, when we fed flies

with the fluoxetine—a selective serotonin reuptake inhibitor

(SSRI)—to increase the extracellular 5-HT level,54,60 the coinci-

dence timewindowwas extended to 25.2 s (Figure 1E). Together,

these results suggest that the 5-HT signal bi-directionally regu-

lates the coincidence time window of olfactory learning.

5-HT regulates the coincidence timewindow of synaptic
depression
One potential mechanism that explains the shift of the coinci-

dence time window in olfactory learning is that 5-HT regulates

the change in synaptic plasticity underlying memory formation.

Previous electrophysiological recording and Ca2+ imaging

studies in the MBON innervating the g1 compartment (MBON-

g1pedc) suggest that pairing an odor with dopaminergic rein-

forcement induces synaptic depression between KCs and the

MBON.61–63 Here, we trained the head-fixed fly under two-

photon microscope with a similar protocol to our T-maze assay

(Figures 2B and S1B), and we performed in vivo imaging with

ACh3.0 expressed in KCs (Figure 2A) or the Ca2+ probe

GCaMP6sexpressed inMBON-g1pedc (Figure S1A). Comparing

the odor-evoked responses pre- and post-pairing, we observed

synaptic depression only for the CS+, but not for the CS�
(Figures 2C and S1C), consistent with previous reports.

Studying the coincidence time window that allows synaptic

depression to happen, we systematically examined the change

of ACh release (DACh) after odor-shock pairing with different

ISIs. In control flies, significant synaptic depression occurred

only when the ISI was %14 s (Figures 2D and S2A), with a t50 of

14.8 s, on par with the t50 of 16.9 smeasured for aversive learning

with T-maze (Figure 1C). Next, we found that the coincidence

time windows in Trhn�/� flies and SSRI-treated flies were shifted

to 12.4 s (Figures 2E and S2B) and 18.0 s (Figures 2F and S2C),

respectively. These results indicate that 5-HTbi-directionally reg-

ulates the coincidence time window for altering synaptic plas-

ticity in the g1 compartment.

Physiological stimuli trigger heterogeneous 5-HT
release from single DPM neuron
In each hemisphere, the neuropil of the single serotonergic DPM

neuron ramifies throughout MB lobes (Figure S1D). Although pre-

vious studies report the physiological activity of the DPM neuron

with GCaMP or synapto-pHluorin,44 the 5-HT dynamics are still

unknown owing to a lack of tools. The development of the seroto-

nin GRAB sensor, i.e., 5-HT1.0, allows us to selectively detect
left), and summary of the relative change (right) of odor-induced ACh signals

s, Trhn�/� flies, and SSRI-fed flies (10 mM fluoxetine). (D2–F2) Summary of the

indicated ISI; n = 5–9 flies/group. DACh indicates the difference between pre-

he t50 ± standard error, Hill coefficient, and R2 are shown. The coincidence time

shaded area. The dashed vertical line at 14.8 s represents the coincidence time

t).
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5-HT release from the DPMneuron through in vivo imaging. Opto-

genetic activation of the DPM neuron triggered homogeneous

release of 5-HT in the g1–g5 compartments, in a pulse number-

dependentmanner (Figures3A–3F). Bycontrast, thephysiological

stimuli, suchasodorapplicationandelectric shock, inducedcom-

partmentally heterogeneous 5-HT release, and the 5-HT signals

vanishedwhen theDPMneuronwas silencedbypotassiumchan-

nel Kir2.1, or the 5-HT synthesis was impeded by mutating the

Trhn gene (Figures 3G–3I). These heterogeneous patterns were

not due to unequal expression of 5-HT1.0 sensor along the KCs’

axon,becauseexternally applied5-HTstill elicitedequivalent fluo-

rescence increase (Figure 3J). These results prompted us to

further examine the regulation underlying these heterogeneous

5-HT signals and the functional role they play in regulating the

coincidence time window.

The DPM neuron and KCs are reciprocally connected
and functionally correlated
We next explored the DPM neuron’s upstream and downstream

connections in the MB by analyzing recently published EM con-

nectomics.64–67 The results show that the DPM neuron forms

reciprocal connections with most of the cell types within the MB

microcircuit, among which KCs comprise more than 80% of the

DPM neuron’s upstream synapses and more than 50% of the

DPM neuron’s downstream synapses (Figures S3A–S3G). We

examineda total of 1,931KCsand found that eachKCforms recip-

rocal connections with the DPM neuron.

Toelucidate the functional relationshipbetween theDPMneuron

and KCs, we used the GCaMP5 and 5-HT1.0 to detect the activity

of and 5-HT release from theDPMneuron, respectively, and adop-

ted the ACh3.0 to measure ACh release from KCs (Figure S3H).

Comparing the odor- and electric shock-evoked changes in

fluorescence of g2–g5 compartments, we found that the Ca2+

and 5-HT signals were directly correlated with the ACh signals

(Figures S3I and S3J), suggesting that the DPM neuron and

KCs are not only reciprocally connected but also functionally

correlated.

KCs are both necessary and sufficient for activating the
DPM neuron
Determining the input-output relationship between the DPM

neuron and KCs, we utilized the chemogenetic silencer Gai-

coupled hM4Di-DREADD68 to inactivate the KCs with deschlor-

oclozapine (DCZ)69 and found that odor- and shock-induced

5-HT signals in the g lobe were abolished (Figures 4A–4C).

Meanwhile, the DCZ application showed no significant effect

on stimuli-induced 5-HT signals in flies without hM4Di

(Figures S4A–S4C). These results suggest that the excitatory
(1 ms/pulse, 635 nm, 10 Hz), and 5-HT was measured using 5-HT1.0 expre

average traces (E), and summary (F) of the change in 5-HT1.0 fluorescence

nAChR antagonist Meca (100 mM) was applied to avoid indirect activation.

(G–J) Physiological stimuli induce heterogeneous 5-HT signals in the g lobe. Sho

setup, in which 5-HTwasmeasured using 5-HT1.0 expressed in the KCs. Also sho

summary (H3–J3) of the change in 5-HT1.0 fluorescence in response to odor (1

DPM > Kir2.1 flies, and Trhn�/� flies; n = 6–14 flies/group.

*p < 0.05; ***p < 0.001; and n.s., not significant (paired or unpaired Student’s t te

See also Figures S1 and S3.
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input from KCs is required to trigger 5-HT release from the

DPM neuron in physiological conditions.

Next, we found that applying ACh—but not other neurotrans-

mitters, i.e., DA, OA, glutamate, or GABA—was sufficient to

induce 5-HT release in the horizontal lobe that includes the g

lobe, and this excitatory effect could be blocked by mecamyl-

amine (Meca), a nicotinic ACh receptor (nAChR) antagonist

(Figures S4D–S4F). Optogenetic activation of the KCs also

caused the release of 5-HT in a pulse number-dependentmanner

(Figures S4G–S4I). However, the light-induced 5-HT release dis-

appeared in transgenic flies with UAS-CsChrimson but without

KC-Gal4, ruling out the unspecific effect due to the leaky expres-

sion of channelrhodopsin (Figures S4J–S4M).70 Furthermore, we

found that the light-induced response was compromised by

Meca, but not by the muscarinic ACh receptor (mAChR) antago-

nist tiotropium (Tio) (Figures 4D–4F), which is consistent with the

documented transcriptomic data71 showing that nAChRs,

insteadofmAChRs, are enriched in theDPMneuron (FigureS3K).

Finally, we found that two-photon laser-mediated local stimula-

tion of KCs could readily evoke highly localized 5-HT release

(Figures S4N–S4P). Thus, the activation of KCs is both necessary

and sufficient to drive the release of 5-HT from the DPM neuron.

The DPM neuron provides inhibitory feedback to KCs
Having shown the excitatory signaling from KCs to the DPM

neuron, we next examined signaling in the opposite direction—

from the DPM neuron to KCs. We optogenetically activated the

DPM neuron and measured both tonic and physiological stim-

uli-induced phasic ACh dynamics in the g lobe (Figure 4G). Given

that the DPM neuron is reported to couple with the GABAergic

anterior paired lateral (APL) neuron via gap junctions,46 we

applied gap junction blocker carbenoxolone (CBX) to avoid

indirect activation.72 We found that activating the DPM neuron

significantly reduced both tonic and phasic ACh signals

(Figures 4H–4K and S5A–S5E). As negative controls, these inhib-

itory effects were not observed, neither in flies only with UAS-

CsChrimson but without DPM-Gal4 (Figures S5F–S5I) nor in

Trhn�/� flies (Figures S5J–S5L). Analysis of transcriptomic

data71 suggests that 5-HT1A and 5-HT1B receptors—both of

which are coupled to the inhibitory Gai pathway73—are enriched

in KCs of the g lobe (Figure S3L). Here, we found that the DPM

neuron-mediated inhibition of the tonicACh level could be specif-

ically blocked by the 5-HT1A receptor antagonist, WAY-

100635,74 but was not sensitive to 5-HT2A, 5-HT2B, and

5-HT1B receptor antagonists (Figures 4J and 4K). Although the

DPMneuron has also been reported to co-releaseGABA,50 func-

tional imaging experiments suggested that GABAA or GABAB re-

ceptor antagonists did not influence the DPM neuron-mediated
ssed in the KCs. Also shown are representative pseudocolor images (D),

in response to the indicated number of light pulses; n = 7 flies/group. The

wn are schematics and fluorescence images (G) depicting the in vivo imaging

wn are pseudocolor images (H1–J1), average and individual traces (H2–J2), and

s), electric shock (0.5 s, 90 V), and 5-HT perfusion (100 mM) in control flies,

st).
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inhibition (Figures S6A–S6C). Moreover, analysis of transcrip-

tomic data71 revealed that the abundance of genetic markers

for the GABAergic neuron is extremely low in the DPM neuron

(Figure S3M). To examinewhether theAPLneuronwould be influ-

enced by optogenetically activating the DPM neuron, we probed

the APL neuron’s activity with GCaMP5 in the absence of CBX

and found that the Ca2+ signal was virtually unaffected during

light stimulation, whereas it responded robustly to odor stimula-

tion (Figures S6D–S6G).75–78 In summary, the tonic and phasic

ACh dynamics are suppressed by 5-HT from the DPM neuron.

Given that (1) 5-HT1A couples the inhibitory Gai pathway,73

and (2) the classical model of olfactory learning centers on the

adenylyl cyclase, rutabaga, which is believed to integrate

the CS and US signals then elevate the cAMP level within

KCs,6,10,23,26,27,29,79–84 it is critical to explore the influence of

activating the DPM neuron on both tonic and phasic cAMP sig-

nals (Figure 4L). Here, we adopted a recently published cAMP

sensor, G-Flamp1,85 and found that unlike the ACh signals, acti-

vating the DPM neuron did not affect the phasic cAMP increase

but selectively turned down the tonic cAMP level via 5-HT1A

(Figures 4M–4P and S6H–S6J).

Altogether, we dissected the reciprocal relationship between

the DPM neuron and KCs in the g lobe, in which KCs release

ACh to locally activate the DPM neuron via nAChRs, and in turn

the DPM neuron releases 5-HT to inhibit intracellular cAMP of

and ACh release from KCs via the 5-HT1A receptor (Figure 5A).

5-HT dynamics gate the coincidence time windows of
synaptic depression in different MB compartments
Having studied the coincidence time window of synaptic plas-

ticity in the g1 compartment by systematically changing the

5-HT level, we next wanted to test whether the coincidence

time window would be modulated specifically by the 5-HT

signaling from the DPM neuron to KCs (Figures 5A and 5B).

We first examined flies expressing Gal4 in the DPM neuron and

measured a 14.2-s coincidence time window (Figures 5C and

S2D), which is akin to the one of 14.8 s in control flies (Figure 2D).
Figure 4. 5-HT release from the DPM neuron is activated by ACh from

(A–C) Silencing KCs abolishes stimuli-evoked 5-HT release in the g lobe. Shown ar

KCs were silenced by DCZ (30 nM), and 5-HT was measured using 5-HT1.0 ex

average and individual traces (B, bottom), and summary (C) of the change in 5-HT

with or without DCZ; n = 5–11 flies/group. In each fly, the experiment was divided in

were applied for 1–3 trials, in random order.

(D–F) Activating KCs induces 5-HT release in the g lobe. Shown are schematics (D)

activated by light pulses (1 ms/pulse, 635 nm, 10 Hz), and 5-HT was measured

images (E, top), average and individual traces (E, bottom), and summary (F) of the c

or in the presence of either themAChR antagonist Tio (100 mM) or the nAChR antag

into three sessions, and in each session the light was applied for 3 trials.

(G–K) Activating the DPM neuron inhibits both stimuli-evoked (phasic) and sponta

in vivo imaging setup in which the CsChrimson-expressing DPM neuron was activ

ACh3.0 expressed in KCs. Also shown are average and individual traces (H and J

odor (5-s application) and electric shock (0.5 s, 90 V) with or without light stimu

(20 mM); n = 7–9 flies/group. When measuring phasic signals, a fly received 2–8 pa

were performed in random order. When measuring tonic signals, each fly was test

junction blocker CBX (100 mM) was present throughout the experiment.

(L–P) Activating the DPM neuron selectively inhibits spontaneous (tonic) but does

similar to (G)–(K) except that cAMP was measured using G-Flamp1 expressed in

*p < 0.05; **p < 0.01; ***p < 0.001; and n.s., not significant (paired Student’s t tes

See also Figures S3–S6.
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When the DPM neuron was silenced by Kir2.1 or optogenetically

activated through CsChrimson, the coincidence time windows

were shortened to 10.9 s or prolonged to 24.0 s, respectively

(Figures 5D, 5E, S2E, and S2F). The prolonged effect of optoge-

netic activation relied on 5-HT synthesis, as it disappeared when

combining with the genetic background of Trhn�/� (Figures 5F

and S2G). The 5-HT signal perceived by KCs is critical for the

maintenance of the coincidence time window, because it was

shortened in 5-HT1A�/� flies and KC > 5-HT1A-RNAi flies to

12.0 and 13.0 s, respectively (Figures 5G, 5H, S2H, and S2I).

Given that heterogeneous 5-HT signals were observed upon

physiological stimuli, we speculated that these patterns would

endow MB compartments with intrinsically distinct lengths of

the coincidence time window. To test this hypothesis, we first

examined the changes in synaptic plasticity (DACh) in g2–g5

compartments after odor-shock pairing through ACh3.0 imaging

(Figures 6Aand6B) andobserved significant depression in theg2

and g3 compartments (Figure 6C),86 which together with the g1

compartment are known tomediate the approaching behavior.87

By examining the DACh with different ISIs, we measured the

coincidence time windows of 17.4 and 23.3 s for the g2 and g3

compartments (Figures 6D–6G), respectively, which were

directly correlated with the physiological 5-HT dynamics

(Figure 6H).

5-HT released from the DPM neuron serves as a
specialized regulator of the coincidence time window in
olfactory learning
In olfactory learning behavior, the coincidence timewindow could

also be regulated by specifically manipulating the DPM neuron via

the inhibitory Kir2.1 or the excitatory CsChrimson, as it was short-

ened or prolonged to 10.4 or 44.1 s, respectively, compared

with the 16.1-s t50 of the flies carrying DPM-Gal4 (Figures 7A–

7E). In addition, the regulation depends on the 5-HT signal

released from the DPM neuron and perceived by KCs, because

the coincidence timewindow could be extended to 33.3 s by spe-

cifically overexpressing Trhn in the DPM neuron (Figure 7F) or
KCs, and the 5-HT signal provides inhibitory feedback on KCs

e schematics (A) depicting the in vivo imaging setup inwhich hM4Di-expressing

pressed in KCs. Also shown are representative pseudocolor images (B, top),

1.0 fluorescence in response to odor (1 s) or electric shock (0.5 s, 90 V) in flies

to saline and DCZ sessions, and in each session, the odor and/or shock stimuli

depicting the in vivo imaging setup in which CsChrimson-expressing KCswere

using 5-HT1.0 expressed in KCs. Also shown are representative pseudocolor

hange in 5-HT1.0 fluorescence in response to optogenetic stimulation in saline

onist Meca (100 mM); n = 6 flies/group. For each fly, the experiment was divided

neous (tonic) ACh release in the g lobe. Shown are schematics (G) depicting the

ated by light pulses (5 ms/pulse, 635 nm, 4 Hz), and ACh was measured using

), and summary (I and K) of the change in ACh3.0 fluorescence in response to

lation, or to 60-s light stimulation with or without 5-HT receptors’ antagonists

irs of odor and/or shock stimuli, and in each pair the light-on and light-off trials

ed in 4 sessions, and in each session the light were applied for 3 trials. The gap

not influence stimuli-evoked (phasic) cAMP dynamics in the g lobe. Shown are

KCs; n = 8–15 flies/group.

t).
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shortened to 14.7 and 10.6 s in 5-HT1A�/� flies and KC> 5-HT1A-

RNAi flies, respectively (Figures 7H and 7I). By contrast, the

DPM > Gad1-RNAi flies, which lack glutamic acid decarboxylase

1 (Gad1) for GABA synthesis, exhibited a 17.0-s coincidence time

window, suggesting that GABA signal from the DPM neuron is

dispensable in this process (Figure 7G).50

When systematically analyzing all data obtained from flies

with different genetic or pharmacological perturbations, we

found that changing the serotonergic neuromodulation from

the DPM neuron generally did not affect the amplitudes of PI

or DACh with short ISIs (Figures 8A and S7A–S7J). Instead,

the DPM neuron-released 5-HT plays a specialized role in

coherently regulating the coincidence time windows at

both circuitry and behavioral levels, resulting in a direct

correlation of these two processes (Figures 8B and 8C).

Specifically, activating the serotonergic neurotransmission

from the DPM neuron to KCs—e.g., in SSRI-fed flies and

DPM > CsChrimson flies with light stimulation—extends the

coincidence time window; conversely, inhibiting the DPM-to-

KCs signaling—e.g., in Trhn�/� flies, DPM > Kir2.1 flies,

5-HT1A�/� flies, and KC > 5-HT1A-RNAi flies—shortens the

coincidence time window. In addition, we noticed interesting

changes in the Hill coefficient of sigmoid function in different

fly groups (Figures S7K and S7L), implying that 5-HT may inter-

fere with a cooperative machinery within the KCs, which awaits

to be addressed in the future.

Serotonergic neuromodulation of the DPM neuron helps
to bridge the temporal gap between CS and US
Our findings prompted us to investigate in which functional

context the DPM-mediated serotonergic neuromodulation

may apply. Given that a 10-s odor was used in our experiments,

and all the measured coincidence time windows were R10 s,

the DPM-released 5-HT seems to specifically regulate trace

conditioning (with temporally separated CS and US) but not

delay conditioning (with overlapped CS and US). Therefore,

we focused on a sequential trace conditioning paradigm,7,31 in

which insects trained with ascending ISIs (from 15 to 35 s)

exhibit better learning performance than the ones trained with

descending ISIs (from 35 to 15 s). Utilizing a similar paradigm

(Figures S8A and S8B), we found that the improved perfor-

mance in the ascending group was only observed in control

flies—not in DPM > Kir2.1 flies or Trhn�/� flies (Figure S8C)—

suggesting that the DPM neuron and 5-HT contribute to

bridging the temporal gap between CS and US during

ascending pairing.
Figure 5. 5-HT signal from the DPM neuron bi-directionally modulate

compartment

(A and B) Schematics depicting the in vivo imaging setup (A, left), the inhibitory

protocol (B).

(C–H) (C1–H1) Schematics depicting themeasurement of synaptic depression in t

perturbations affecting the serotonergic DPM-to-KCs signaling. In (E), the CsChri

the start of the odor application to 4.5 s after the last electric shock being applied.

the relative change of the integrated ACh3.0 fluorescence in response to the CS

difference between pre- and post-responses; n = 5–10 flies/group. (C3–H3) The

coefficient, and R2 are shown. The dashed vertical line at 14.8 s represents the c

*p < 0.05; **p < 0.01; ***p < 0.001; and n.s., not significant (paired Student’s t tes

See also Figure S2.
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To examine the changes in synaptic plasticity, we performed

live imaging with ACh3.0 in the g1 compartment (Figures S8D

and S8E). The ACh signals in response to CS+ were depressed

in the ascending group (Figure S8F) but were not changed in

the descending group (Figure S8G), which conformed with the

difference in behavior. Interestingly, in the descending group,

the ACh release triggered by CS�was further potentiated, which

explained why olfactory learning still existed. A similar synaptic

potentiation associated with CS� has also been reported previ-

ously, which involves the reconsolidation of olfactory memory.88

To elucidate the role of 5-HT, we examined its dynamics

throughout these trace conditioning paradigms and found signif-

icant potentiation in response to CS+ in three pairing trials (i.e., at

ISIs of 15, 20, and 25 s) in the ascending group (Figure S8H); by

contrast, the potentiation was only observed in the first pairing

trial (i.e., at an ISI of 35 s) in the descending group (Figure S8I).

These results suggest that 5-HT release is experience depen-

dent. In the ascending group, previous trials with brief ISIs poten-

tiated the 5-HT release in subsequent trials; the increased and

prolonged 5-HT signal expanded the coincidence time window,

thereby helping to bridge the temporal gap between the CS

and US.

DISCUSSION

A century ago, Ivan Pavlov proposed the associative condition-

ing theory, stating as follows: ‘‘A.most essential requisite for.
a new conditioned reflex lies in a coincidence in time of . the

neutral stimulus with. the unconditioned stimulus.’’1 However,

the molecular and circuitry underpinnings that guarantee the

maintenance of the coincidence time window have been un-

known since then. Here, we report that the coincidence time

window of olfactory learning in Drosophila is bi-directionally

regulated by the 5-HT signal from the single DPM neuron, which

forms a feedback inhibitory circuit with the KCs in the MB.

In a natural environment, flies do not experience the precisely

controlled conditioned and unconditioned stimuli that we can

deliver in a laboratory setting; as a consequence, their learning

must be capable of adapting to changing CS/US regimens.

Thus, the modulation due to 5-HT signaling improves their ability

to successfully extract meaningful cause and effect. Addition-

ally, studies have shown that the DPM neuron is involved in

stress,53,54 sociality,89,90 and aging.51,52 Therefore, we speculate

that flies in different brain states shall accordingly exhibit

different coincidence time windows due to the changes of

serotonergic tone within the MB.
s the coincidence time window for synaptic depression in the g1

feedback loop of the DPM neuron and KCs (A, right), and the experimental

he g1 compartment, using ACh3.0 expressed in KCs, with the indicated genetic

mson-expressing DPM neuron was activated by continuous 635-nm light from

(F) was similar to (E), except that Trhn�/� flies were used. (C2–H2) Summary of

+ in pre- and post-pairing sessions with the indicated ISI. DACh indicates the

DACh-ISI profile was fitted to a sigmoid function; the t50 ± standard error, Hill

oincidence time window of synaptic depression in control flies.
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Versatile functions of 5-HT signals in olfactory learning
Previously, the DPM neuron was reported to be required specif-

ically during memory consolidation of 3-h middle-term memory

after delay conditioning.43,44,49 Here, we found that the DPM

neuron plays a different role in trace conditioning, regulating

the coincidence timewindowduringmemory formation. Interest-

ingly, people also found that DA has different functions in delay

conditioning and trace conditioning of visual learning via distinct

receptors.9 Another recent finding suggests that the DPM

neuron also functions as a bridge between two groups of

KCs—encoding visual and olfactory signals, respectively—to

improve cross-modal learning.91 Besides the DPM neuron, there

is a serotonergic projection neuron (SPN) innervating DANs in the

peduncle of the MB, which gates the formation of long-term

memory.92 Taken together, the 5-HT signals play versatile func-

tions in different computational processes of olfactory learning.

The intracellular cAMP signal and the regulation of
coincidence time window
The adenylyl cyclase, rutabaga, and its product, cAMP, have

been widely recognized as the key nodes in KCs for olfactory

learning, but the regulation of the cAMP signal has not been fully

explored. By directly imaging cAMP dynamics with G-Flamp1,

we found that activating the DPM neuron selectively suppressed

the tonic level, while the phasic signal remained unchanged

(Figures 4L–4P and S6H–S6J), indicating that the cAMP is tightly

controlled by the endogenous 5-HT signal.

It also remains unclear how the cAMP-related signaling cas-

cades affect the neurotransmission of KCs. Here, we found that

artificial activation of the Gai signaling via hM4Di could eliminate

physiological stimuli-evoked ACh release (data not shown) and

subsequent 5-HT release from the DPM neuron (Figures 4A–4C).

By contrast, endogenous activation of the Gai signaling via

5-HT1A—in response to the DPM neuron-released 5-HT—just

turned down the phasic and tonic ACh dynamics (Figures 4G–4K

and S5A–S5C). These results emphasize the nuance of upstream

regulations and downstream functions of the cAMP signal.

These results drove us to ask how the 5-HT affects intracellular

cAMP signaling and regulates the coincidence time window.

From the perspective of KCs’ ensemble, a computational model

suggests that the difference in cAMP levels between odor-

responsive KCs and non-responsive KCs determines learning ef-

ficiency.93 During odor-shock pairing, 5-HT released from the
Figure 6. Heterogeneous 5-HT signals gate the lengths of coincide
compartments

(A and B) Schematics depicting the in vivo imaging setup (A) and experimental

partments, using ACh3.0 expressed in KCs.

(C) Flies were trained with odor-shock pairing with 10-s ISI, and changes in ACh3.

response to theCS+ (C1) and CS� (C2). Shown are representative pseudocolor im

the ACh3.0 fluorescence; n = 11 flies/group.

(D–G) (D1–G1) Schematics depicting the measurement of synaptic depression

Summary of the relative change of the integrated ACh3.0 fluorescence in respon

indicates the difference between pre- and post-responses; n = 4–10 flies/group. (D

error, Hill coefficient, and R2 are shown. The dashed vertical line at 14.8 s repres

(H) Correlation analysis of coincidence timewindows (y axis: t50 ± standard error) f

(x axis: DF/F0 ± standard error) in g1–g3 compartments. Each set of data was fi

*p < 0.05; **p < 0.01; ***p < 0.001; and n.s., not significant (paired Student’s t tes

See also Figure S2.
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DPM neuron broadly suppresses cAMP in both odor-responsive

and non-responsive KCs; thus, 5-HT indeed increases the

signal-to-noise ratio and improves learning efficiency. We hy-

pothesize that this improvement might become more prominent

at relatively long ISIs, and in such a way 5-HT extends the coin-

cidence time window.

5-HT serves as an additional timing-regulating factor in
the neo-Hebbian learning rule
Apart from Drosophila, 5-HT is involved in learning and memory

in a wide range of species, including Aplysia,94,95 C. elegans,96

and mammals.97–100 A growing body of evidence supports the

notion that 5-HT affects timing during reinforcement

learning.101–107 Human studies in a trace conditioning paradigm

showed that decreasing 5-HT level by tryptophan deprivation

specifically impaired learning with a long ISI.108 By contrast,

studies of the nictitating membrane response in rabbits found

that the hallucinogenic lysergic acid diethylamide (LSD, a non-

selective 5-HT receptor agonist) facilitates learning with a long

ISI.16,17 These findings are reminiscent of our observations in

Drosophila in which 5-HT bi-directionally regulates the coinci-

dence time window. Thus, a similar serotonergic mechanism

may be recruited by both vertebrates and invertebrates.

The classic model of Hebbian plasticity suggests that co-acti-

vation of presynaptic and postsynaptic neurons within a short

time window enables changes in synaptic plasticity, a phenome-

non known as spike timing-dependent plasticity (STDP). Due to

the inability of STDP to adequately explain reinforcement learning

with a temporal gap, this theoretical framework was updated in

the past decade by introducing a third factor encoded by the

phasic activity of neuromodulators,mediating reinforcement, sur-

prise, or novelty.109–114 In this updated three-factor neo-Hebbian

learning rule,115 ‘‘co-activation’’ plants a flagat the synapsecalled

an eligibility trace,whichwaits for the third factor to implement the

change in synaptic strength and determine the direction of that

change (i.e., synaptic depression vs. potentiation). The neo-Heb-

bian learning rule is also applied in the MB of arthropods, where

STDP exits between KCs and MBONs,116 with the dopaminergic

reinforcement corresponding to the third factor. However, to the

best of our knowledge, a putative fourth factor that specifically

regulates the length of the eligibility trace remains unknown.

Several theories have been proposed suggesting that 5-HT may

serve as a timing regulator in a variety of processes, including
nce time windows for inducing synaptic depression in the g1–g3

protocol (B) for measuring changes in synaptic plasticity in the g2–g5 com-

0 fluorescence were compared between the pre- and post-pairing sessions, in

ages (left), average (± SEM) traces (top right), and the summary (bottom right) of

in different g lobe compartments, using ACh3.0 expressed in KCs. (D2–G2)

se to the CS+ in pre- and post-pairing sessions with the indicated ISI. DACh

3–E3) The DACh-ISI profile was fitted to a sigmoid function; the t50 ± standard

ents the coincidence time window measured for the g1 compartment.

or inducing synaptic depression and the odor- or shock-evoked 5-HT dynamics

t to a linear function, and the R2 is shown.

t).
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Figure 8. 5-HT from the DPM neuron serves as a specialized regulator of the coincidence time window

(A) Summary of the PI (A1) and DACh (A2) measured in the indicated flies with short and long ISIs; n = 3–10 for each group.

(B) Correlation analysis of coincidence time windows (y axis: t50 ± standard error) measured in olfactory learning and that for inducing synaptic depression in the

g1 compartment (x axis: t50 ± standard error) of the indicated flies. The data were fit to a linear function, and the R2 is shown.

(C) Schematics depicting the working model that the increase or decrease of 5-HT signal from the DPM neuron prolongs or shortens, respectively, the

coincidence time window for inducing synaptic depression of ACh release from KCs, and it ultimately affects the olfactory learning behavior.

***p < 0.001 and n.s., not significant (unpaired Student’s t test).

See also Figures S7 and S8.
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reinforcement learning.117,118 Consistent with these predictions,

we here experimentally show that 5-HT signaling from the DPM

neuron proportionally gates the coincidence time window, there-

foreserving asa specific timing-regulating factor that provides the

missing piece of the puzzle.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yulong Li

(yulongli@pku.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All imaging data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains
Fly husbandry

Flies were raised on corn meal at 25�C in 50% humidity, under a 12-hour light /12-hour dark cycle. For optogenetics, flies were

transferred to corn meal containing 400 mM all-trans-retinal after eclosion and raised in the dark for 8-24 hours before imaging or

behavioral experiments. For fluoxetine treatment, flies were transferred to a tube containing a filter paper loaded with 150 ml 5%

(w/v) sucrose solution containing 10 mM fluoxetine for 14-20 hours before imaging or behavioral experiments.

Detailed fly genotypes used by figures

Figure 1. 1C, 1E: Canton-S (Control)

1D: Trh01 / Trh01 (Trhn-/-)
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Figure 2. 2A, 2C, 2D and 2F: LexAop2-ACh3.0 / CyO; MB247-LexA / TM6B

2E: R13F02-LexA / LexAop2-ACh3.0; Trh01 / Trh01

Figure 3. 3A-3F: UAS-CsChrimson-mCherry / R13F02-LexA; VT064246-Gal4 / LexAop2-5-HT1.0

3G-3J: UAS-5-HT1.0 / CyO; R13F02-Gal4 / TM2 (Control)

3G-3J: UAS-Kir2.1 / R13F02-LexA; VT064246-Gal4 / LexAop2-5-HT1.0 (DPM > Kir2.1)

3G-3J: R13F02-LexA / LexAop2-5-HT1.0; Trh01 / Trh01 (Trhn-/-)

Figure 4. 4A-4C: UAS-hM4Di / +; UAS-5-HT1.0 / +; R13F02-Gal4 / +

4D-4F: UAS-CsChrimson-mCherry / R13F02-LexA; 30y-Gal4 / LexAop2-5-HT1.0

4G-4K: LexAop2-ACh3.0 / UAS-CsChrimson-mCherry; MB247-LexA / VT064246-Gal4

4L-4P: LexAop2-G-Flamp1 / UAS-CsChrimson-mCherry; MB247-LexA / VT064246-Gal4

Figure 5. 5C: LexAop2-ACh3.0 / +; VT064246-Gal4 / MB247-LexA

5D: LexAop2-ACh3.0 / UAS-Kir2.1; VT064246-Gal4 / MB247-LexA

5E: LexAop2-ACh3.0 / UAS-CsChrimson-mCherry; VT064246-Gal4 / MB247-LexA

5F: LexAop2-ACh3.0 / UAS-CsChrimson-mCherry; VT064246-Gal4,Trh01 / MB247-LexA,Trh01

5G: 5HT1AGal4 / 5HT1AGal4; MB247-LexA / LexAop2-ACh3.0

5H: LexAop2-ACh3.0 / +; MB247-LexA, 30y-Gal4 / UAS-5-HT1A-RNAi

Figure 6. 6A-6H: LexAop2-ACh3.0 / CyO; MB247-LexA / TM6B

Figure 7. 7C: VT064246-Gal4 / VT064246-Gal4

7D: UAS-Kir2.1 / CyO; VT064246-Gal4 / TM3

7E: UAS-CsChrimson-mCherry / CyO; VT064246-Gal4 / TM6B

7F: UAS-Trhn / UAS-Trhn; VT064246-Gal4,Trh01 / VT064246-Gal4,Trh01

7G: UAS-Gad1-RNAi / VT064246-Gal4

7H: 5HT1AGal4 / 5HT1AGal4

7I: UAS-5-HT1A-RNAi / 30y-Gal4

Figure S1. S1A-S1C: R12G04-lexA / CyO; LexAop2-GCaMP6s / TM2

S1D: UAS-CsChrimson-mCherry / R13F02-LexA; VT064246-Gal4 / LexAop2-5-HT1.0

Figure S3. S3H-S3J: LexAop2-ACh3.0 / CyO; MB247-LexA / TM6B (KC > ACh3.0)

S3H-S3J: UAS-GCaMP5 / CyO; VT064246-Gal4 / TM6B (DPM > GCaMP5)

S3H-S3J: UAS-5-HT1.0 / CyO; C316-Gal4 / TM2 (DPM > 5-HT1.0)

Figure S4. S4A-S4F: UAS-5-HT1.0 / CyO; R13F02-Gal4 / TM2

S4G-S4I, N-P: UAS-CsChrimson-mCherry / R13F02-LexA; 30y-Gal4 / LexAop2-5-HT1.0

S4J-S4M: UAS-CsChrimson-mCherry / R13F02-LexA; LexAop2-5-HT1.0 / + (without KC-Gal4)

S4J-S4M: UAS-CsChrimson-mCherry / R13F02-LexA; LexAop2-5-HT1.0 / 30y-Gal4 (with KC-Gal4)

Figure S5. S5A-S5E: LexAop2-ACh3.0 / UAS-CsChrimson-mCherry; MB247-LexA / VT064246-Gal4

S5F-S5I: LexAop2-ACh3.0 / UAS-CsChrimson-mCherry; MB247-LexA / + (without DPM-Gal4)

S5F-S5I: LexAop2-ACh3.0 / UAS-CsChrimson-mCherry; MB247-LexA / VT064246-Gal4 (with DPM-Gal4)

S5J-S5L: LexAop2-ACh3.0 / UAS-CsChrimson-mCherry; MB247-LexA,Trh01 / VT064246-Gal4,Trh01

Figure S6. S6A-S6C: LexAop2-ACh3.0 / UAS-CsChrimson-mCherry; MB247-LexA / VT064246-Gal4

S6D-S6G: L0111-lexA / GH146-Gal4; LexAop2-CsChrimson.tdTomato / UAS-GCaMP5

S6H-S6J: LexAop2-G-Flamp1 / UAS-CsChrimson-mCherry; MB247-LexA / VT064246-Gal4

Figure S8. S8A-S8C: Canton-S (Control)

S8A-S8C: Trh01 / Trh01 (Trhn-/-)

S8A-S8C: UAS-Kir2.1 / CyO; VT064246-Gal4 / TM3 (DPM > Kir2.1)

S8F-S8G: LexAop2-ACh3.0 / CyO; MB247-LexA / TM6B

S8H-S8I: UAS-5-HT1.0 / CyO; R13F02-Gal4 / TM2

METHOD DETAILS

Behavioral experiments
Experiments were conducted in a dark room at 22�C in 50-60%humidity. Flies within 24-72 hours after eclosion were transferred to a

new tube 12 hours before the experiment. To avoid anesthesia during sorting, both female andmale flies were used. A total of 50-100

flies were used for each trial. The odorants were diluted in mineral oil, with 3-octanol (OCT) and 4-methylcyclohexanol (MCH) diluted

to 1:67 and 1:100, respectively. A flowof air was bubbled in the odorant-containingmineral oil and delivered to the training and testing

arms of the T-maze at 800 ml/min. Before training, flies were accommodated in the training arm for 2 min.

For single-trial training shown in Figures 1 and 7, the CS+ was delivered via the airflow for 10 s. Electric shocks (US) were delivered

(90 V, 1.25 s/pulse, 3 pulses at 0.2 Hz) via the copper grid contained within the training arm with varying ISIs. For optogenetic

stimulation in Figure 7E, the light was delivered from the distal end of the training arm of T-maze, and the power was at

500�1500 mW/mm2. 2 min after the end of the shocks, the CS- was delivered via the airflow for 10 s.
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For five-trial training shown in Figures S8A–S8C, each trial contains the CS+ (10 s) paired with electric shocks (90 V, 1.25 s/pulse, 4

pulses at 0.2 Hz), and the CS- (10 s) being delivered 60 s after the end of the shocks. Between each trial, there was a 90-s break.

1 min after training, the flies were transferred to the elevator and allowed to accommodate for 3 min before testing. During testing,

the CS+ and CS- were delivered from two distal ends of the arms for 30 s, during which the flies were allowed to move freely to make

their choice. The PI of one experiment was calculated as the difference in the number of flies in each arm divided by the sum of flies in

both arms. The official PI was calculated as the average of two experiments with interchanged CS+ and CS-.

The deliveries of different stimuli, i.e., odors, shock and 635-nm light, were synchronized by Arduino.

In vivo imaging with two-photon microscope
Adult female flies within 2 weeks after eclosion were used for the imaging experiments. Each fly wasmounted to a customized cham-

ber using tape, and a 1 mmX 1mm rectangular section of tape above the head was removed. The cuticle between the eyes, air sacs,

and fat bodies were sequentially and carefully removed in order to expose the brain. During dissection and the imaging experiments,

the brain was bathed in adult hemolymph-like solution (AHLS) containing (in mM): 108 NaCl, 5 KCl, 5 HEPES, 5 D-trehalose, 5 su-

crose, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2 and 2 MgCl2.

The functional imaging experiments were conducted using an Olympus FVMPE-RS microscope equipped with a Spectra-Physics

InSight X3 dual-output laser. GFP-containing probes (including ACh3.0, 5-HT1.0, DA2m, GCaMP6s, GCaMP5 and G-Flamp1) were

excited by a 920-nm laser and the signals were collected using a 495-540-nm filter. RFP-containing probes (mCherry and tdTomato)

were excited by a 1045-nm laser and the signals were collected using a 575-630-nm filter. The 1045-nm excitation laser was also

used for the two-photon optogenetic stimulation shown in Figures S4N–S4P and was delivered to the region of interest at �20 mW.

For single-photon optogenetic stimulation, a 635-nm laser (Changchun Liangli Photo Electricity Co., Ltd.) was used, and the light

was delivered to the brain via an optic fiber at �180 mW/mm2 in Figures 4D–4P, 5E, S4G–S4I, S5A–S5E, S5J–S5L, and S6, and at

indicated powers in Figures S4J–S4M and S5F–S5I.

For odor stimulation, the odorant was first diluted by 200-fold (v/v) in mineral oil. An airflow was bubbled through the mineral oil at

200 ml/min, which was then converged with another pure airflow delivered at 800 ml/min. The combined airflow was finally delivered

to the fly antenna at 1000ml/min. For the experiments in Figures 3H, 4A–4C, S3H–S3J, and S4A–S4C, isoamyl acetate (IA) was used.

For the experiments in Figures 2, 4G–4I, 4L–4N, 5, 6, S1A–S1C,S5A, S5B, S5D, S5E, S5J–S5L, S6D–S6G, S6H, S6I, and S8F–S8I,

OCT and MCHwere used. For all odor-shock pairing experiments, OCT and MCHwas randomly selected as the CS+, with the other

odorant being the CS-.

For electric shock stimulation, two copper wires were attached to the fly’s abdomen, and the voltage was set to 90 V.

The deliveries of different stimuli, i.e., odors, shock and 635-nm light, were synchronized by Arduino.

For the experiments in Figures 4J, 4K, 4O, 4P, S4D–S4F, S5C, S6A–S6C, and S6J, a small section of the blood-brain-barrier was

carefully removed with tweezers before applying the indicated neurotransmitters and/or compounds.

Immunostaining and confocal imaging
The brains of female adult flies (7-14 days after eclosion) were dissected in ice-cold phosphate-buffered saline (PBS), fixed in ice-cold

4% (w/v) paraformaldehyde solution for 1 h, and washed 33 10 min with washing buffer (PBS containing 3% NaCl and 1% Triton

X-100). The brains were next incubated in penetration/blocking buffer (PBS containing 2% Triton X-100 and 10%normal goat serum)

for 20 h at 4�C on a shaker. The brains were then incubated with primary antibodies (diluted in PBS containing 0.25% Triton X-100

and 1%normal goat serum) for 24 hours at 4�C, andwashed 33 10min in washing buffer on a shaker. The brains were incubated with

the appropriate secondary antibodies (diluted in PBS containing 0.25% Triton X-100 and 1% normal goat serum) overnight at 4�C in

the dark, and washed 33 10min with washing buffer on a shaker. The samples were finally mounted with Fluoroshield and kept in the

dark. The following antibodies were used at the indicated dilutions: chicken anti-GFP (1:500), rabbit anti-mCherry (1:500), mouse

anti-nc82 (1:40), Alexa Fluor 488 goat anti-chicken (1:500), Alex Fluor 555 goat anti-rabbit (1:500), and Alex Fluor 647 goat anti-mouse

(1:500). Fluorescence images were obtained using a Nikon Ti-E A1 confocal microscope. Alexa Fluor 488, Alexa Fluor 555, and Alexa

Fluor 647 were excited using a 485-nm, 559-nm, and 638-nm laser, respectively, and collected using a 525/50-nm, 595/50-nm, and

700/75-nm filter, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

All summary data are presented as the mean ± SEM, superimposed with individual data. The sample size for each experiment is indi-

cated in the corresponding figure legend.

Behavioral experiments
The PI of one experiment was calculated using the following equation: PIone exp = ½ðNCs� �NCS+ Þ =ðNCS� +NCS+ Þ�. If all flies failed to

learn, then PI = 0; if all flies avoided the shock-associated odor, PI = 1. To reduce the possible bias of innate preference, the official PI

was the average of two experiments (one with OCT being the CS+, while another one with MCH being the CS+) calculated as follows:

PI = ½ðPIOCT CS+ +PIMCH CS+ Þ =2�.
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For the relative PI-ISI profiles shown in Figures 1 and 7, we defined PImax as the average of two PIs on the left (two short ISI data

points; e.g., ISI = 5 and 10 s), and PImin as the average of two PIs on the right (two long ISI data points; e.g., ISI = 20 and 50 s).

Relative PI= ½ðPI�PIminÞ =ðPImax �PIminÞ�: Error bars represent the ½ðSEM of PIÞ=ðPImax � PIminÞ�. The data were fitted with a sigmoid

curve using the ‘‘DoseResp’’ function in Origin (OriginLab), resulting in a t50 ± the standard error, Hill coefficient, and R2.

In vivo imaging with two-photon microscope
Images were processed using ImageJ software (National Institutes of Health). When generating the pseudocolor images, signals

outside of the region of interest (outlined with white dashed lines) are eliminated to avoid distraction. The fluorescence response

was calculated using the following equation: DF=F0= ½ðF�F0Þ =F0� , in which F0 is baseline fluorescence. The area under the curve

was calculated using the integral of the fluorescence response (!DF/F0). In Figures 2, 5, 6, S1A–S1C, and S8F–S8G, the fluorescence

responses measured during the 10-s odor application were included in !DF/F0. In Figures S8H and S8I, the fluorescence responses

measured during the odor and shock application (65-s duration from the start of the odor application) were included in !DF/F0. Rela-
tive !DF/F0 was calculated by normalizing each !DF/F0 to the response measured during the corresponding pre-pairing session.

For each DACh-ISI profile shown in Figures 2, 5, and 6, DACh = ½ðRelative R
DF=F0preÞ � ðRelative R

DF=F0postÞ�. The error bars

represent the SEM of the relative DACh. The data were fitted with a sigmoid curve using the ‘‘DoseResp’’ function in Origin

(OriginLab), resulting in a t50 ± the standard error, Hill coefficient, and R2.
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